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D-component rotators as the classical limit of quantum SO(D) 
vector models 

Filippo Cesi? 
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, 
USA and INFN, Sezione di Roma, Italy 

Received 24 November 1989 

Abstract. We consider a class of spin systems whose single-site configuration space is an 
orbit of a representation of a compact Lie group G. For these models we get upper and 
lower bounds to the quantum partition function in terms of two classical partition functions. 
If a certain group-theoretic condition is satisfied, then these bounds allow us to prove the 
convergence of a suitable sequence of quantum partition functions to the 'corresponding' 
classical one. This condition is shown to be satisfied, in particular, for the D-component 
rotators when D is odd. Our result could be useful for the extension of the Lee-Yang 
theorem to such models. 

1. Introduction 

In 1973 Lieb [ l ]  obtained upper and lower bounds to the partition function of the 
quantum three-component rotator (quantum Heisenberg model), in terms of the parti- 
tion function of the corresponding classical system. By means of these bounds it is 
possible to prove the convergence of the quantum partition function (or the free energy) 
to the classical one in the limit of infinite angular momentum. 

D-component rotators are systems of interacting D-dimensional vectors of unit 
norm ( 1 1  c p o  ( 1  = 1) on a lattice A with N sites. Their statistical behaviour is determined 
by the following partition function: I exp[-H(pcp)l n dv(cp") cp E p € R  (1 .1)  

nc.\ 
Z ( P ,  D) = 

( S D - I p  

where SD-'  is the (D-1)-dimensional unit sphere considered as embedded in RD, 
and dv is the rotation-invariant measure on the sphere. The Hamiltonian H is assumed 
to be linear in the variables at each site. A common example is 

The constant p which multiplies each spin has been introduced in (1.1) for further 
convenience. In the case D = 3 the quantum partition function is defined as follows. 
Let T be a representation of SO(3) on the vector space V ( V  is the single-spin quantum 
space) and let t be the corresponding 'infinitesimal' representation of the Lie algebra 
so(3). Replace now in the classical partition function each variable qpP with the operator 

to(si)=n,@. - .@n,-l~t(si)On,+lO. . .on, 
t Address after August 1990: Department of Mathematics, The University of Texas at Austin, Austin, Texas 
78712, USA. 
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where {S I } := ,  is a basis of so (3 ) .  r"(S,) acts on the tensor product of N copies of V. 
The integral over the classical configurations is also replaced by the trace of the resulting 
operator. So we define the quantum partition function as 

Z ' (p ,  S 0 ( 3 ) ,  k )  = (2k+ l ) - N  Tr exp[-H'(pf~(S,))]. (1 .3)  

k is an integer (or half integer if one considers SU(2)) which labels the irreducible 
representations of S 0 ( 3 ) ,  and t k  is the (2k + 1)-dimensional representation. 

Lieb's result states, for each k, that 

Z ( k , 3 ) s Z Q ( l , S O ( 3 ) ,  k ) s Z ( k + l , 3 )  (1.4) 

so that, with a suitable rescaling of the parameters, 

Z ( 1 , 3 ) s  Z Q ( k - ' ,  S 0 ( 3 ) ,  k ) s  Z ( ( k +  l ) /k ,  3) .  

From this it follows that 

Z ( 1 , 3 )  = lim Z ' ( k - ' ,  S0(3),  k ) .  
k - X  

This is the fundamental result which gives the classical partition function as the 
infinite-angular-momentum limit of the quantum partition function. 

Besides the intrinsic interest, Lieb's limit theorem, together with the results of Asano 
[ 2 , 3 ] ,  Suzuki and Fisher [4], has allowed Dunlop and Newman [5] to prove the 
Lee-Yang theorem for those vector models which can be well approximated by classical 
ferromagnetic D-component rotators when D = 2,3. In this important class of statis- 
tical systems there are, for instance, the vector models of (p4 type, i.e. those with a 
single-site measure given by 

d/lo(Sc") = exP(-A I1 (0 114 + Y I1 C P U  1 1 2 )  $ P a  E RD. 

A spin system is said to have the Lee-Yang property if its partition function, as a 
function of the complex magnetic field, is non-zero in a volume-independent region 
of the complex plane which contains the positive real axis. A consequence of the 
Lee-Yang property is the absence of phase transitions when the (real) magnetic field 
is non-zero. 

Whether or not the Lee-Yang theorem holds for D-component rotators when D > 3 
is still an open question. An important step in this direction could be an extension of 
Lieb's result to general D. 

In this paper we show how such an extension can be carried out for an arbitrary 
odd D = 2 n + l .  It turns out that it is still possible to construct a quantum partition 
function which, in a certain limit, recovers the classical one. When D = 3  this limit 
reduces to the ordinary limit of infinite angular momentum. In the rest of the paper 
we will mostly deal with general spin systems in which the single-site configuration 
space is an orbit of a representation of a compact Lie group G. However in this 
introduction, for simplicity, we prefer to sketch the case G = SO(D),  which, having 
spherical orbits (in the standard representation), is connected with D-rotators. 

We started from the reasonable expectation that, analogously to the D = 3 case, 
the quantum D-rotator could be defined by means of operators acting on some SO( D) 
representation space in such a way that (1.4) can be generalised to 

Z(P,(  n, D )  Z'(1, W D ) ,  T )  s Z(P, (T) ,  D )  (1.5) 
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where T now denotes any representation of SO(D) ,  which can no longer be (con- 
veniently) specified with a single integer k, and p ,  , pz are real numbers which depend 
on the representation T. If a sequence { Tk} of representations of SO( D )  exists such that 

then we obtain the desired result 

The problem is how to define a SO(D)  quantum model which can be considered as 
the quantum version of the D-component classical rotator and such that (1.5) and 
(1.6) hold. This is a non-trivial generalisation since, in the D = 3 case, one exploits 
the correspondence 

{ q 1 } L - { W = 1  

between R3 and so(3). One cannot hope, of course, to extend this correspondence to 
the case D >  3, since dim so(D)  = i D ( D  - l ) ,  which is, in general different from D. 
In other words, the operators IS,},,,, i ,  j = 1, . . . , 0, that form a basis for so(D) ,  are 
rank-two antisymmetric tensors, while the elements of R D  are vectors. D = 3 is a special 
situation just because, in that case, the two notions coincide. 

In this paper we take a point of view which is in some sense complementary to 
that of Fuller and Lenard [6] and of Simon [7]. They de$ne the quantum partition 
function of the quantum SO(D)  model (Simon treats the more general case of any 
compact group) as 

(1.8) 

and ask themselves what kind of models are recovered in the classical limit (1.7). 
Unfortunately in this way one never gets D-spheres as classical-limit manifolds (with 
D > 2),  so that (1.8) cannot be considered a good quantum version of the classical 
D-rotator. Actually Simon shows how classical ( D  - 1)-spheres, for D odd, can be 
still obtained in a trickier indirect way. He associates the classical D-component 
rotator to the quantum SO(D+ 1 )  model defined in (1.8), by means of the correspon- 
dence 

Z Q ( p ,  SO(D) ,  T )  = (dim V ) - N  Tr exp[-HQ(pt(S,,))] 

This idea is successful because of the existence of a classical limit manifold which is 
a fibre bundle over SD-' .  However it has the drawback of requiring in (1.9) the choice 
of an arbitrary D-dimensional subspace of so(D+ 1). Doing that, he explicitly breaks 
the rotational symmetry in the quantum model, and this can obscure some fundamental 
geometric properties of the system. 

In the approach we present in this paper, on the contrary, we impose that the model 
we have to recover in the classical limit must be the D-rotator and we look for a 
suitable quantum SO(D)  vector model that can accomplish this task. Of course our 
definition has to be as natural as possible and, when D = 3, it must coincide with (1.3). 
The key idea is the following: since the classical variables of the D-rotator are vectors 
in RD, the variables of the corresponding quantum models must be linear operators 
which transform as a vector under SO(D) .  This means that, given a representation T 
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of SO(D)  on a linear space V, we have to look for a set of linear operators {P i } : ,  on 
V, such that 

D 

T ( R ) - ' P , T ( R )  = R,,? V R  E SO(D)  
J = l  

(1.10) 

where R ,  are the matrix elements of an element of SO(D). The quantum partition 
function is thus defined as 

Z g ( p ,  SO(D) ,  T )  = (dim V)-" Tr exp[-HQ(pPi)] 

where the operators Pi depend, of course, on the representation T. By means of two 
basic inequalities of Berezin [8,9] and Lieb [ 11 it is easy to see that condition (1.10) 
allows one to obtain bounds like (1.5). Unfortunately operators which satisfy (1.10) 
exist only when D is odd. Moreover, in that case they are not uniquely determined 
so that an ambiguity (besides the trivial multiplication of each Pi by a constant) seems 
to arise in the definition of the quantum partition function. This ambiguity can be 
conveniently resolved by demanding that the ratio P, (  T ) / P 2 (  T )  is as suitable as possible 
(that is, near to 1) in view of (1.6). With this choice we will show how to find a 
sequence of representations Tk such that (1.6) is satisfied. In particular we get for 
SO(2n + 1) 

pI(Tk) k 
P2(Tk) - k + n  ' 

Our main result (corollary 3.6) is that, for each odd 0, we have 

J ( S D - l ) Y  as,\ 
exp[-H(cp)] n dv(cp*)= lim (dim V ' k ' ) - N  T r e ~ p [ - H ~ ( P ' ~ ' ) l .  

k - c c  

We also give an explicit expression for the representations Tk,  as well as for the 
corresponding operators Pik'.  

2. Basic definitions and notation? 

Throughout this paper A = { 1, .  . . , N }  is a finite set which represents the lattice. We 
do not impose any geometric structure on A because it does not play any role. N = lAl 
is the number of sites. 

Given a finite-dimensional vector space Z, we denote by L ( 2 )  the set of linear 
operators on 2, and by GL(2)  the group of the invertible operators. Ut is the identity 
operator. R denotes the complex conjugate of x, and A* stands for the adjoint operator 
with respect to some scalar product. 

G is a connected, semisimple, compact Lie group and LG is its Lie algebra. In the 
following we will consider two representations R : G-GL( W) and T :  G-GL( V) 
which act respectively on the vector spaces W and V. Both R and T are assumed to 
be continuous and irreducible. As a consequence they are also finite dimensional and 
unitary with a suitable choice of a scalar product in W and V. The corresponding 
'infinitesimal' representations of LG are denoted by r and t. 

t Some notation used in the introduction can slightly differ from those of the rest of the paper, which are 
fixed in this section. 
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By the standard representation of a classical group (SU(n), SO(n), or Sp(n)) we 
mean the fundamental n-dimensional representation which simply operates on @ "  by 
matrix multiplication. 

We use either R, or R ( g )  to indicate the element g E G represented in GL( W) and 
analogously for T. 

2.1. 7'he classical partition function 

Even though we are principally interested in D-components rotators, and our sharpest 
results are limited to this case, our discussion can be carried out in a more general 
setup. This can be useful, in our opinion, for a deeper understanding of the problem. 
So we define a quite general family of classical spin systems which are 'indexed' by 
an orbit of an irreducible representation R of the Lie group G ,  acting on a vector 
space W of dimension D. The orbit, which is a subset of W, represents the single-spin 
classical configuration space. D-rotators are recovered, as we will see, by setting 
G = SO(D) and taking R as the standard representation. 

The Hamiltonian of the system is defined as a function H : WN-R, which can be 
expressed as a sum of monomials in the variables 

xp,  mp CUEA i =  1, .  . . , D 

such that each monomial is of degree 1 in the variables at each site. A common 
example is given by (1.2). 

The representation R naturally extends to a representation 2 of G N  on W N  setting, 
for each x = ( X I ,  . . . , x N ) e  W N ,  

&x= ( R ( g ' ) x ' ,  . . . , R ( g N ) x N )  

with g = { g a } O L E . 2 .  Now let x be an arbitrary element of W and let 

2 = ( x ,  * . . , x)  E W N .  

Z ( R ,  x)  = exp[-H(fi,2)] n dp(g")  X E  w. (2.1) 

The classical partition function of the system is defined as 

L OLE 2 

d p  is the invariant (Haar) measure on G which exists because G is compact and thus 
unimodular [lo]. Expression (2.1) can be given a more convenient form. Let, in fact, 

K ,  = { g  E GIR,x = x }  

be the isotropy group at x. The integration over the group G can be 'subdivided into' 
integrations over each left coset [ 113, i.e. unique left-invariant measure dv  exists on 
the quotient space G I K ,  such that for any continuous function f we have 

where d p K  is the Haar measure on K, .  In the case of (2.1) the integrand is constant 
on each coset, and can be brought outside the inner integral. So if p = gK, is a generic 
left coset, we can symbolically set p * x E RG, and we set also 
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With the normalisation j K ,  d p K  = 1, we get 

Z( R, x )  = [ e x p [ - ~ ( ~ . 2 ) 1  n d v ~ ) .  
( G / K , ) &  LI E .2 

The coset space GIK, is naturally homeomorphic to the orbit of x 

Orb(x) = { R p l g  E G} X E  w 
the homeomorphism being realised by the mapping G/K,-Orb(x), g K , - R g .  This 
map induces a measure on Orb(x), so that (2.1) can be finally written as 

Z (  R, x )  = [ exp[-H(cp)l n d4cp"). 
L I € A  

We thus see that Z ( R ,  x)  actually depends only on the orbit of R through x. 

Example. Let G = SO( D) with R the standard representation. In this case 
W = R D  K ,  = SO( D - 1) G/ K ,  = SD-' 

and 

Orb(x) = IIxIISD-' { y  E RDl llyll= Ilxll}. 
Equation (2.2) becomes 

r 

where dv is the rotation-invariant measure on the sphere. This is the usual partition 
function for the D-component rotator. 

2.2. The quantum partition function 

For the definition of the quantum partition function we need the following ingredients. 
(i) A vector space V which plays the role of the single-spin quantum configuration 

space (the analogue of CZk+'  when G = SO(3))  and determines the quantum configur- 
ation space of the whole system as the tensor product 

where each V" is an isomorphic copy of V. 
(ii) A continuous, irreducible and unitary representation T of G acting on V. 
(iii) A correspondence rule which associates a quantum Hamiltonian HQ to a 

given classical Hamiltonian H. HQ must be a self-adjoint linear operator on ? 
A natural correspondence rule can be constructed starting from the following consider- 
ation: since a classical spin is a vector in W, then a quantum spin must be defined as 
D-ple of operators { P , } E ,  acting on V ,  which transform under G as the components 
of a vector in the representation R. The following definition will sharpen this idea. 

DeJinition 2.1. Let {wi>i"=, be a given basis of W and let R , ( g )  be the matrix elements 
of R, in this basis. A contravariant tensor operator (with respect to R, T and {wi},"=,) 
is a collection of operators { P i } : , ,  where Pi E L( V), such that 

D 

T,'PiT, = R, (g )P ,  V g  E G. (2.4) 
j = 1  
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Condition (2.4) can be converted to infinitesimal form. Let r and t be the representa- 
tions of LG associated, respectively, with R and T. Every g E G contained in some 
neighbourhood of the identity can be expressed as g = exp A for some A E LG, where 
exp: LG + G is the standard exponential mapping. Moreover 

(the same applies to T, t ) .  This equation, combined with (1.4), implies 
R(exp A) = exp r(A) VAEL, 

D 

[P, ,  ? ( A l l =  c r,(A)P, V A E L ~ .  
1 - 1  

Example. Let { E , }  be a basis of LG. An important example of a tensor operator can 
be constructed setting W = LG and 

In fact, if ad : LG-L( LG) denotes the adjoint representation defined by 

we get 

PI = ?(E,). 

ad,( B )  [A, B] A,BELG 

[p, ,  t (A)I=  [t(E,), ?(A11 = - f ( a d A E )  =c  ad,,(-A)t(E,). 
J 

Thus the set {t(E,)} is a contravariant tensor operator with respect to the representation 
r,(A) = ad,,(-A), which in global form corresponds to 

The representation R is said to be contragredient with respect to the adjoint 
representation. 

This representation seems to be in a certain sense privileged, because we can 
construct a 'standard' contravariant tensor operator starting from a basis of the Lie 
algebra of the group G. Unfortunately the choice (2.5) has a drawback: we know from 
(2.2) that the classical spin space turns out to be an orbit of the representation R. The 
trouble is that the adjoint representation (or its contragredient) never yields spherical 
orbits (with the exception of S 2 )  [7], ruling out the possibility of getting the classical 
rotators with more than three components in a direct way. 

In the approach we present in this paper we choose R as the standard representation 
of SO(D) .  In this case the problem will be how to construct the appropriate contra- 
variant tensor operator which gives the desired classical limit. 

Once we have a contravariant tensor operator, we built up the quantum Hamiltonian 
as follows. Let {P,}f=, be a contravariant tensor operator and let, for each (Y E A, 

where we have set U, U " 0 .  We define the quantum Hamiltonian H Q  to be that operator 
one obtains by replacing, in the classical Hamiltonian, the variables xp with the 
operators PP (and the variables 2:' with the operators (Pp)* )  acting on If, for 
instance, H is given by (1.2), then we set 

R,(g) = Ad,,(g-'). (2.5) 

PP = (I),@. * *0(0) , - ,0P,@(O) , , ,@-  * -@(U), E t( 0) 

- H Q ( P ) =  c J"@ c PPPf3+ hfPP. 
n , P s A  I = ,  O C A  , = I  
a * @  

Note that, since the Hamiltonian is assumed to be of degree 1 in the variables at each 
site, and since PP commutes with P," whenever (Y # p, no ordering ambiguity arises 
in our substitution rule. Moreover H Q  is self-adjoint, because H is real. 

The quantum partition function is then defined as 
Z Q ( R ,  T, P ) = ( d i m  V ) - N  Trexp[-HQ(P)].  
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The rest of the paper is devoted to showing how, at least in the case of G = SO(2n + 1 )  
and R the standard representation (corresponding to the ( 2 n  + 1)-components rotator), 
a sequence of representations Tk exists such that 

Z ( R ,  x )  = lim Z g ( R ,  Tkr P ' k ) )  

if we make the right choice for the operators 
expression for both T k  and P c k ' .  

k - a  

= {Pik '} : , .  We also give an explicit 

3. Berezin-Lieb inequalities 

The basic tools for proving upper and lower bounds (1 S )  (in a generalised version) 
are two inequalities independently obtained by Berezin [ 8 ,9 ] ,  and Lieb [l]. Our 
exposition will follow [7]. 

DeJinition 3.1. Let V be a finite-dimensional vector space and ( X ,  X, p )  a measure 
space such that jx d p  = 1. A family of coherent projections is a measurable map 
T : X + L( V )  such that 

(i)  For each x E X ,  T ( X )  is an orthogonal projection onto a one-dimensional sub- 
space of V 

(ii) 

lx T ( X )  d p ( x )  = cBv for some C E  R. (3.1) 

(Note that, since V is finite dimensional, this integral is well defined.) The constant 
c is actually determined. In fact we have the following. 

Proposirion 3.1. If T :  X + L( V) is a family of coherent projections, then 

J ~ ( x )  d p ( x )  = (dim v)-'nv. 
X 

ProoJ: Taking the traces of both sides of (3.1) we get 

1 = I x  d p ( x )  = c Tr V =  c dim V. 

Simple proofs of the following inequalities can be found in [7]. 

0 

Theorem 3.2 Cfirst Berezin-Lieb inequality). Let A be a self-adjoint operator on V. If 
we set aL(x )=Tr (Ar (x ) ) ,  then a L €  L"(X, d p ) ,  and 

lx exp[aL(x)] dp(x)== (dim V)- '  Tr exp A. 

Theorem 3.3 (second Berezin-Lieb inequality). Let au(x)  E L"(X, dp) ,  be real valued, 
and define the operator 

A =  dim V a U ( x ) r ( x )  dp (x ) .  I, 
Then we have 

(dim V)-'  Tr exp A S  exp[au(x)] dp(x) .  
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The two functions aL and aU are, respectively, called by Simon the lower symbol and 
the upper symbol of A. In [7] many properties of lower and upper symbols are 
discussed. 

4. Upper and lower bounds and the classical limit 

The inequalities stated in the previous section allow us to obtain upper and lower 
bounds to the quantum partition function in terms of two classical partition functions. 
The group G N  (together with its Haar measure) will play the role of the measure space 
X .  The first step is the construction of a family of coherent projections r : G + L( V), 
where now V is the quantum spin space. We remember that G is assumed to act on 
V through the representation T. A scalar product ( , ) is introduced in V such that T 
is unitary. 

Proposition 4.1. Let U E V be a fixed unit vector, and for each g E G let .ir,(g) be the 
orthogonal projection onto the one-dimensional subspace generated by Tgu 

r,  ( g )  u = ( Tgu, U )  Tgu. 
Then ru is a family of coherent projections on (G, p ) ,  where p is the invariant measure 
on G.  

ProoJ Since T is a continuous representation, flu is continuous and, by consequence 
it is measurable. Moreover, we have 

r , ( g )  = TgruTg' VgEG 

where r, = r , ( e )  and e is the unit element of G .  If we define Mu E L( V) as 

Mu = I, ru(g) d p ( g ) ,  

we obtain, Vh E G ,  

T(h)MU = jG T(hg)r,T(g-') d p k )  = jG T(k)~,T(k-'h) d p ( k )  = M , T ( h )  

where we have set k = hg and we have exploited the invariance of the measure. Thus 
Mu commutes with each operator Th. Since T is irreducible, by Schur's lemma, 
Mu = clv,  and, by proposition 3.1 

Mu = (dim V)-'Uv. U 

We can now easily construct a family of coherent projections on GN. In fact, given 
U = { u ~ } ~ ~ , , E  V N ,  such that I1uuI1 = 1, it is straightforward to verify that the map 

$, : GN-L( 9 )  

is a family of coherent projections. 
In order to apply the second Berezin-Lieb inequality to our quantum Hamiltonian 

we have to construct the upper symbol of a contravariant tensor operator. This is done 
by means of the following. 
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Theorem 4.2. Let U E  V be the highest-weight vector of unit norm, relative to the 
representation T, and let { wl>El a basis of W. A collection of operators P = { P I } : ,  
is a contravariant tensor operator with respect to R, T and { w , } ~ ,  if and only if a 
vector y e  W exists such that 

PI =dim v I, (Rgy) , .rr , (g)  dCL(g) i =  1 , .  . . , D (4.2) 

where (R,y) ,  = ( w , ,  Rgy).  Furthermore, if P is a contravariant tensor operator and 

(U, PIU) = 0 i =  1 , .  . . , D (4.3) 

then P, = 0 for each i. 

Z'rooj The if part of the first statement is straightforward. In fact, if (4.2) holds, then 

Th1P,Th =dim V ( R , y ) , x , ( h - ' g )  d p ( g )  

The only if part, which is much less trivial, follows from theorem A.2.3 of [7] (we 
adopt a different convention for tensor operators so that our matrix R is the complex 
conjugate of his matrix V). There it is proved that each set of operators { P , } E ,  
satisfying (2.4) has the form 

= [ G J ; ( g ) T u ( g )  dCL(g) 

where the functions J ;  can be chosen in such a way that 
D 

A M ) =  c R , ( g ) f ; ( h )  Vg, h E G. 
/ = 1  

Setting y ,  = (dim V)- 'J ; ( e )  we get 

/ = 1  

from which (4.3) follows. 

(2.4) and (4.3) imply 
The second statement follows from lemma A.2.1 of [7]. We have only to note that 

Tr(Pi.rrU(g))=(Tgu, P,T,u)=O v g  E G, i = l ,  . . . ,  D. 0 
Since each contravariant tensor operator has the form (4.2), from now on we denote 
by P ( y )  the operator associated with y ,  i.e. 

(4.4) 

The vector U which appears on the RHS of (4.4) is understood to be the unit-norm 
highest-weight vector for the representation T. Our first general result is the following. 
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Theorem 4.3. Let R and T be two representations of G satisfying the hypotheses of 
section 2, and let U E V, I( U 11 = 1, be the highest-weight vector for T For each y E W 
we have 

Z ( R ,  w )  =s Z'(R, T, P ( Y ) )  C Z ( R ,  Y )  

where the operators P ( y ) >  are given by (4.4) and X E  W is defined as 

x, =(U, P(Y),U? i = l ,  . . . ,  D. 

ProoJ: Let 2, y* E W N  be given by 

2 = (x, . . . , x)  y*"(Y , .  . * , Y ) *  

Looking at (2.1) and remzmbering that H is real and H g  is self-adjoint, it is clear 
that if we prove that H ( R 8 )  and H ( @ )  are respectively the lower and the upper 
symbol of H Q ( P ( y ) )  with respect to the family of coherent projections (4.1), then this 
theorem is a consequence of the two Berezin-Lieb inequalities. So we must show that 

Tr[H'(P(y))&,(g)l= H(&$) VgEGN (4.5) 

and that 

= (Rgx) ,  

and, analogously, 

Tr[ ( P(Y 1 i )* nu (g )I = (&z) 
The quantum Hamiltonian is a sum of terms which have the form 

where A and are two disjoint subsets of A. Since Tr(AO B )  = Tr A Tr B, taking the 
trace of H Q ( P ( y ) ) & , ( g >  is equivalent to replacing in HQ each P ( y ) g  with ( R ( g " ) x " ) , ,  

0 and each ( P ( y ) g ) *  with ( R ( g U ) f a ) , .  Thus (4.5) follows. 

4.1. The classical limit 

A straightforward consequence of theorem 4.3 is the following classical-limit result. 
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Theorem 4.4. Assume that you can find a sequence of representations T, : G-GL( V,), 
and a vector y E W such that, 

(4.7) 

Z(R,  y )  = lim Zg(R,  T,, P ‘ k ’ ( y ) )  (4.9) 
k - 3 3  

follows. 

Of course one could hope that a result like (4.9) would hold for any ‘reasonable’ 
choice of G and R. This is unfortunately false. In the next section, in fact, we prove 
that a necessary condition for getting 

(U, P(Y)U> f 0 

(which is in turn necessary for having P ( y )  # 0) is that y must belong to the zero-weight 
subspace of W. This excludes all the representations R which do not have the zero 
weight. Among these there is also the standard representation of SO(2n) which would 
yield the (2n)-components rotator. In other words, if G = SO(2n) there are no non- 
trivial contravariant tensor operators with respect to R and T, when R is the standard 
representation. 

Our results are for this reason limited to rotators with an odd number of components. 
In this case the standard representation has a one-dimensional zero-weight subspace, 
and we will prove that condition (4.7) can be satisfied with an appropriate choice of 
Tk. We recall here for clarity (see the next section for more details) that the finite- 
dimensional irreducible representations of SO(2n + 1) are identified by a non-increasing 
n-ple of non-negative integers 

( k ,  3 k 2 3 . .  . s  k , )  
which are the components of highest weight in a suitable basis. For those who are 
familiar with Young-tableau methods, we say that ki represents the length of the ith 
row of the Young tableau associated with the representation. 

Theorem 4.5. Let G = S O ( D ) ,  D = 2 n + l ,  let R be the standard representation of 
SO(2n + 1) acting on W = R D  and let Tk be the representation of SO(2n + 1) with 
highest weight ( k ,  . . . , k ) .  If P ‘ k ’ ( y )  is the associated contravariant tensor operator 
given by (4.8), where y is an element of the (one-dimensional) zero-weight subspace 
of W, then 

so that (4.7) holds. 

We give the proof in the next section. As we have already remarked, this result 
implies that the classical partition function of D-rotators can be obtained as a kind 
of ‘infinite angular momentum limit’ of the quantum one. 
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Corollary 4.6. With the hypotheses of theorem 4.5 we have, for D odd, 

I (SD-l  1 N ,E 2 
exp[-H(llyll$~)] n dv(q")  = rim -3c (dim V k ) - N  Tr exp[-HQ(P"'(y))]. 

Proof: It follows from theorems 4.4, 4.5 and from (2.3). 0 

5. Proof of theorem 4.5 

In this section we will show how to compute, in the case of D-component rotators the 
quantities 

X, =(U, P ( Y ) i U )  i =  1,. . . , D 

where U is the highest-weight vector for a certain representation T of S O ( D ) ,  and 
P ( y ) ,  are given by (4.4). 

We briefly recall some known facts about Lie algebras and their representations in 
order to fix our notation. See, for instance, [12] for an extensive discussion. 

5.1. The structure of a compact semisimple Lie algebra LG 

First we introduce the complex extension ( L G ) c  of LG.  The motivation for dealing 
with (LG)c is that in general it is easier to study complex rather than real Lie algebras. 
On the other hand the irreducible representations of (LG)c are just the complexified 
irreducible representations of LG [ 12, chap X.141, thus it is possible to get information 
about the irreducible representations of the real Lie algebra L G ,  exploiting the properties 

Fix in (LG)c a Cartan subalgebra H (unfortunately H is the traditional symbol for 
both the Hamiltonian and the Cartan subalgebra; we hope that no confusion will arise) 
and denote its dual by H*. If A c H* is the set of non-zero roots relative to H, we have 

of (L0)C. 

( L G ) c = ~ +  Lo 
U € ? r  

where L, is the one-dimensional root space. Thus we have 

[ X ,  Y,l= a ( X )  y, V X E H  VU, E Lea. 

For each a E A an unique element X ,  E H exists such that 

a ( X )  =(Xu, X )  V X E H  

where ( , ) is the Killing form on (LG)c. We also choose an element E ,  in each L, 
normalised in such a way that 

[ E , ,  E-U1 = x,. (5.1) 
Now let s : L G e L ( 2 )  be any irreducible representation of La on a finite-dimensional 
vector space 2, and let s': (L,),-L(Z) be the complex extension of s, defined by 

s'(X + i Y) = s ( X )  + is( Y) x, YELG. 
The representation space Z can be decomposed as a sum of orthogonal weight 
subspaces 

z =e ~ ( ~ 1  

A 
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where 

Z(* '  _= {z E Z/s'(X)z = A (X)z, VX E H}. 

This decomposition remains the same if we consider the real weights, so we will not 
make any distinction between the two cases. An important property of the weight 
spaces is that if p + a is a weight, then 

s'(E,)Z'P'C Z'" '" ' .  ( 5 . 2 )  

Since LG is compact, a complex scalar product ( , ) can be chosen in 2 in such a way 
that s ( A )  is anti-Hermitean for each A E LG. This is equivalent to requiring that the 
global representation S of G is unitary. With respect to such scalar product and with 
the normalisation (5.1), one gets 

S(E,)*  = s ( E _ , )  V ~ E A  (5.3) 

where A* denotes the adjoint of A. 
We anticipate here a result which will be useful in the following. 

Proposition 5.1. If Z E  2'" is a unit vector such that s(E,)z=O, then 

Ils(E-,)zl12 = ( P ,  a )  = A X , ) .  

Proof: The computation is straightforward. We just have to remember (5.1), (5 .3)  and 

5.2. Proof of theorem 4.5 

We now return to our original problem of computing x,. Setting 

D, =dim v I, R,(g)l(u, Q ) 1 2  d P k )  

we have 

D 

J = 1  
x, = c D,Y,. 

Integrals of the type (5.4) can be expressed in terms of the so-called 
coefficients. The strategy is the following. Suppose, to be general, 

(5.4) 

( 5 . 5 )  

Clebsch-Gordan 
that Q is a third 
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irreducible representation of G on the vector space Y and choose orthonormal bases 
{ w i } ,  {U,} and {yp} respectively in W, V and Y. We want to compute the quantities 

dim y Rij(g)Tab(g)opq(g) dPu(g). 

Consider the tensor product representation between R and T, defined by RO 
T :  GHGL( W O  V), g H R g @  Tg, or, in infinitesimal form, rO t : LG++L( W O  V), 
X-rX 0 1 + 0 0 t x .  R 0 T can be decomposed as a sum of irreducible representa- 
tions 

(5.6) R O T = @ S,.  
7 

This means that it is possible to write 

w o v = e z ,  (5.7) 

where each 2, is an invariant subspace for R 0 T and the restriction of R 0 T to each 
subspace 

S J g )  = ( R O  T) , I ,  
is an irreducible representation of G. For those S,  which are equivalent to Q (we 
write S, = Q) let U, be the unitary operators that realises the equivalence, i.e. U, : Y H Z ,  
are such that S,  = U,QU;'. Then, by means of the orthogonality relations [lo,  chap. 
71, it can be easily proved that 

c 

In our case Q = T, hence (5.4) becomes 

D, = (WiOU, u,)(u,, W j O  U )  
7:S,=-T 

where now U, = U,u E Z, is the highest-weight vector for the representation S,. So a 
first necessary condition in order to get x # 0 (and so P ( y )  # 0) is: 

(c,) the decomposition of the tensor prdouct RO T must contain a factor equivalent 
to T. 

A second condition is easily found if we choose the basis {wi}f=, in such a way 
that each element wj has a definite weight. In fact, with this convention, we have the 
following result. 

Proposition 5.2. The matrix element D, is non-zero only if wi and wj are both zero-weight 
vectors. 

ProoJ Clearly U, (for all T such that S, = T )  has the same weight of U. Since 

weight( wi 0 U )  = weight( U )  +weight( wi) 

if wi has a non-zero weight, then the w , O u  and U, have different weights and so they 
0 are orthogonal. From ( 5 . 8 ) ,  D, = 0 follows. The same applies to wj. 
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This proposition suggests to us that the only good candidates are those representa- 
tions R such that: 

(cz) the zero-weight space of R (  W'O') is non-trivial. 

Since we are mainly interested in the classical D-component rotators which are 
recovered by setting G = SO( D )  with R the standard representation, let us check what 
happens in this case. We discuss separately the cases D even and D odd, which have 
different characteristics. 

5.2.1. The Lie algebra so(2n + 1). The Lie algebra so(2n + 1, C )  can be shown [12]  to 
be isomorphic to the algebra of the matrices {All} ,  i, j = 0, *l, . . . , * n  which satisfy 

A,, = -A-J,-, i , j=O,* l , .  . .  , * n .  (5 .9 )  

This representation is, in some respect, more convenient than the usual representation 
in term of anti-symmetric matrices, because, as we will see, it is possible to choose a 
Cartan subalgebra made up of diagonal matrices. 

If we let e, be the matrix whose elements are given by ( e y ) k l  = 6&l, then the set 

E,  = e, - e-l,-, i , j = O , * l ,  . . . ,  i n  i + j > O  (5.10) 

is a basis of so(2n + 1, C). Of course, dim so(2n + 1) = ( 2 n  + 1)n. The vector subspace 
of the diagonal matrices which satisfy (5.9) is a Cartan subalgebra H, and the elements 
{hl}y=l, h, = E,, form a basis of H. So dim H = n. Let {A,}:=, be the usual basis in H* 
defined by 

A,(h,) = 6,. 

The Killing form can be normalised in such a way that 

(hi, hi) = ( A i ,  5) = 6,. 
It is also convenient to set h - ,  = -h t ,  A - l  
we have 

-A,  and ho = A,,= 0. With this convention 

[hi, E j k ] = ( ~ ~ j + ~ ~ , - k - ~ i k - ~ i , - j ) E j k  

which is equivalent to 

[ h ,  E ~ k ] = ( A ~ - A k ) ( h ) E ~ k  V h  E H. 
From these relations we can read directly the set of the roots of so(2n + 1, C):  

A = { aII = A ,  - All - n  i, j 6 n, i + j > 0, i # j}. 

The root spaces La,, are spanned by the elements E,. Any irreducible representation 
of so(2n + 1) is determined by its highest weight. The set of the possible highest weights 
which correspond to a single-valued global representation of SO(2n + 1) is 

{klAl  + * + k,A,lkl 3 k2 2 * 3 k, 2 0, k, integers}. 

Consider now the standard representation R which acts on W=C*"+'. Taking the 
standard basis { w ~ } : = - ~  in W, given by 

( w, ) J  = 
it can be checked that 

(5 .11)  

X W ~  = A i (  X )  wj VXEH i=O,*l ,  . . . ,  fn. (5.12) 



Classical limit for D-component rotators 2303 

In particular 

x w ,  = 0 V X  E H. 

Hence W has a zero-weight space of dimension 1 generated by wo.  Unfortunately the 
situation is different when D is even. 

5.2.2. The Lie algebra so(2n). The Lie algebra so(2n, C )  is isomorphic to the algebra 
of the matrices {Ai j } ,  i, j = *l ,  . . . , * n  which satisfy 

,&=-A-. 'J  J.-'  . i , j = * l ,  . . . ,  *n. 
So we can carry out the discussion in a similar way to the so (2nf l )  case, with the 
difference that the indices do not take the value zero. As it is easy to guess, (5.12) 
becomes 

X W ~  = Aj(X)wi V X E H  i = * l , .  . . , *n. 
This means that the set of the weights for the standard representation is 

{*A, ,  . . . , *A,,}. 

Hence this representation has no zero weight. This implies that 

xi =(U, P ( y ) , u )  = 0 

and, by consequence, the possibility of getting a non-trivial quantum partition function 
is ruled out. On the contrary for odd D, we have the following lemma. 

Lemma 4.3. Let R:G-GL( W) be the standard representation of S0(2n+ l ) ,  with 
highest weight A l  and let T :  G-GL( V) be the representation whose highest weight is 
k(Al  +. . . + A , , ) ,  where k is a positive integer. Then 

(i)  the tensor product R O  T contains exactly one factor equivalent to T ;  more 
precisely (5.6) and (5.7) take the form 

R O T = Si 0 S2 0 S3 (5.13) 

W O  v=z10z*0z3 (5.14) 

where, denoting by p i  the highest weight of S i ,  we have 

p1 = ( k +  l ) A l  + k ( A 2 + .  . . + A , , )  = ( k +  1, k, . . . , k )  

p2= k ( A 1 + .  . .+A, , )  = ( k ,  . . . , k )  

~3 = k ( A l + .  .+A, , - , )+  ( k -  1 ) A n  = ( k ,  . . . , k, k -  1) 

(ii) let U be the highest-weight vector in V, U* be the highest-weight vector in 2, 
and wo be the zero-weight vector in W. All these vectors are assumed of unit norm. Then 

(5 .15)  

Proof: The rules for the decomposition of the tensor product of two representations 
of SO(2n + l ) ,  and for the computation of the multiplicities of the weights, although 
straightforward, are not simple enough to be stated here. A systematic exposition can 
be found in [13,14]. In particular, statement (i)  follows from formula ( 1 )  which 
appears at the end of p 509 of [13], and from the rules explained in section 2.4 in the 
same paper. 
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To prove (ii) we use the following method. The problem is that of identifying U^ 

Equation (5.14), restricted to the weight-p subspace takes the form 
as an element in WO V .  

( W O  V)'P'= Z',P'@Z:p'@Z:p'. 

( W O  V)(PZ) = Z { P 2 ) @ Z : p 2 ) .  

Since p1 > p2 > p 3 ,  in particular we obtain 

But p2 is the highest weight in Z 2 ,  thus Z$'zJ is one dimensional. This means that we 
can identify 4 as any unit vector in the orthogonal complement of Zip>) considered as 
a subspace of ( W O  V)'p2). So the problem is solved if we find a basis for ZiP2'. 

Let { w ~ } : = - ~  be the basis of W defined in (5.11). The vector w l O u ,  having weight 
p l ,  necessarily belongs Z1 . Since Z1 in an invariant subspace of R 0 T, we know that 
all the vectors of the form 

( r O t ) ( A , ) .  . . ( r O t ) ( A , ) w , O u  A, E L G  

still belong to Z1. So we can find a basis of ZIP2) acting on w1 0 U with appropriate 
strings of lowering operators (rO t ) ( E , ) .  

It is convenient to define the following particular weights: 

j = 1, . . . , n. 
n 

pz - AJ = 1 kA, + (k  - l ) A J  
, = l  
r # J  

Equation (5.15) is a consequence of the following three statements. 
(a) The subspaces V ' " J ' , ~  = 1, .  . . , n, are one dimensional. 
(b) Choose a unit vector v, in each V c u ~ ) .  Then dim( W O  V)(p2)= n + 1, and the 

n + 1 vectors 

W O O  U { wJ v)>:= I 

form an orthonormal basis of ( W O  V)(p2), 
(c) Real numbers P I , .  . . , P,, exist such that the n vectors 

w,@u+e'P&wJ~uJ j =  1, .  . , , n 
form a basis of Z'iP2). 

Proof of (ii), given (a), (b) and (c). From (b) and (c) we know that a unit vector 
orthogonal to Zip>) is given by 

Hence we obtain 
1/2 

k + n  

Proof of (a). The statement follows from corollary 2 of [14]. 

Proof of (b). Since the weight of the tensor product is given by the sum of weights, 
we have, in general 

( W O  V)(P' = 8 W'"'@ V'"'.  
M* 

W + Y = p  
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Equation ( 5 . 1 2 )  says that the weight of wi is A i ,  thus 

and as a consequence, 

But V(p2+A~)= (0) because p 2 + A ,  is higher than the highest weight, p 2 ,  in V. Thus 

( W O  V ) ( Q  = ( W'O)@ v ( p  2 ) ) @( !& W(','@ V'",' 
J = l  

and since V'"J' are one dimensional, (b) follows. 

Proof of (e).  Let E ,  be the root vector of s o ( 2 n  + 1) given by (5 .10) ,  corresponding to 
the root a, = A, -AJ .  Let TI ,  = (rO ?)(E,).  Z1 is an invariant subspace of rO t, thus 
T,z E 2, if z E Z1. In particular, if we set z E w, 0 U E Z ,  , the n vectors 

U, = roJrJlz u1 = ro l z  j = 2 , .  . . , n 

are all contained in 2, . Furthermore ( 5 . 2 )  implies that 

weight(r,u) = weight(u) + A,  - A, 

thus we have weight(u,) = p 2 ,  so that U, E Z\"~',J = 1 , .  . . , n. We now want to show that 

U, = wo@u+e'PJdE w,@u,. 

We need some preliminary calculations. 

it follows that V ( p 2 - A i + A ~ )  = (0). Hence 
(I)  For each j = 2 ,  . . . , n, weight( t ( E , , ) u )  = p 2  - A I  +AJ.  From corollary 2 of [ 141, 

t ( E , , ) u  = 0. 

(11) By proposition ( 5 . 1 )  we have 

I I t ( E o , ) u l 1 2 = ( A J ,  p 2 ) = k '  

Moreover, weight(t(Eo,)u) = u,. As a consequence 

t ( E o , ) u  = enP&u,. 

(111) Using the explicit expressions ( 5 . 1 0 )  and (5 .11) ,  we get 

r(EoJ)wJ = EoJw, = wo 

We can now collect all pieces, and we get 

r(EJ1)wl=EJlwl = w,. 

U, = r o J r , , ~ = r o J ~ ~ ~ ~ , , ~ ~ , ~ u + ~ , ~ t ~ ~ , , ~ ~ ~  
= ro,wJ o U 
= woo U + eIPJJT;w, 

also linearly independent this completes the proof. 

u,, 
Thus we have obtained that the n vectors U, are all contained in Z(1p2). Since they are 

0 
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Lemma 5.3 and proposition 5.2 tell us that, in the standard basis { w , } : = - ~  of W, 
defined in (5.11), the matrix element D, are given by 

k 
D -- O O - k + n  

D.. = O  if i # O  or j Z 0  

so, letting y = w o ,  by ( 5 . 5 ) ,  we obtain 

k 
k + n Y  

x=- 

which proves theorem 4.5. 

Acknowledgments 

We thank Michael Aizenman, Giuseppe Gaeta, Marco Isopi, Gianni Jona-Lasinio, 
Chuck Newman, Peter Ostapenko and Alan Sokal for interesting discussions. 

References 

[l]  Lieb E 1973 The classical limit of quantum spin systems Commun. Math. Phys. 31 327 
[2] Asano T 1968 Generalisation of the Lee-Yang theorem Prog. Theor. Phys. 40 1328 
[3] Asano T 1968 Generalised Lee-Yang’s theorem J.  Phys. Soc. Japan 25 1220 
[4] Suzuki M and Fisher M 1971 Zeros of the partition function for the Heisenberg, ferroelectric, and 

[5] Dunlop F and Newman C 1975 Multicomponent field theories and classical rotators Commun. Math. 

[6] Fuller W and Lenard A 1979 Generalised quantum spins, coherent states, and Lieb inequalities Commun. 

[7] Simon B 1980 The classical limit of quantum partition functions Commun. Math. Phys. 71 247 
[8] Berezin F A 1972 Convex operator functions Math. USSR Sb. 17 269 
[9] Berezin F A 1972 Covariant and Contravariant Symbols of operators Math. USSR Izv. 6 1117 

general Ising models J. Math. Phys. 12 235 

Phys. 44 223 

Math. Phys. 67 69 

[lo] Barut A and Raczka R 1986 Theory of Group Representations and Applications (Singapore: World 

[ l l ]  Brocker T and tom Dieck T 1985 Represenfations ofCompact Lie Groups (Graduate Texts in Mathematics 

[12] Naimark M A and Stern A I 1982 Theory of Group Representations (Berlin: Springer) 
[13] Koike K and Terada I 1987 Young-diagrammatic methods for the representation theory of the classical 

[14] Koike K and Terada I 1987 On new multiplicity formulas of weights of representations for the classical 

Scientific) 

98)  (Berlin: Springer) 

groups of type B, ,  C,, D, J.  Algebra 107 466 

groups J. Algebra 107 512 


